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Let D/Rd be a compact set and let 8 be a uniformly bounded set of D � R
functions. For a given real-valued function f defined on D and a given natural num-
ber n, we are looking for a good uniform approximation to f of the form �n

i=1 a i,i ,
with ,i # 8, ai # R. Two main cases are considered: (1) when D is a finite set and
(2) when the set 8 is formed by the functions ,v, b(x) :=s(v } x+b), where v # Rd,
b # R, and s is a fixed R � R function. � 1998 Academic Press

1

We consider the following nonlinear approximation problem. Let X be a
Banach space, f, ,k # X, ck # R (k=1, 2, ...), and

f =:
k

ck,k , (1)

where the sum can be finite or infinite or more generally, f can be of the
form f =� c* ,* d+(*), in an appropriate setting. Given a natural number n,
we want to find, based only on (1), a good approximation to f by a linear
combination

gn= :
n

i=1

ai,ki
(2)

of at most n of the ,k . Maurey (see [9]) has proved that if 8 :=[,k] is
a bounded set in a Hilbert space X and if f # co(8 _ (&8)), then for every
n there is a gn for which & f& gn &=O(n&1�2). The author [7] has proved
independently the same estimate for Lq , q<�, assuming that the set 8 is
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bounded in L� . Moreover (see [8]), in a Hilbert space there exists a gn

for which

& f& gn&�2=n(8) n&1�2 :
k

|ck |, (3)

where

=n(8) :=inf[=>0 : 8 can be covered by n sets of diameter �=]. (4)

An estimate of the same nature was proved in [8] for Lq , q<�.
An important example of the above scheme is approximation by neural

networks. For x, y # Rd, we shall write x } y for the scalar product and |x|
for the Euclidean norm. The unit sphere [x # Rd : |x|=1] will be denoted
by Sd . We shall denote by C any constant that does not depend on n (but
may depend on d), so that C may have different values in different places,
even within the same chain of equalities or inequalities. In our proofs we
shall use random numbers, vectors, and functions, which we shall mark by
a tilde (as in v~ ) when we want to distinguish them from the ordinary, non-
random ones.

Given a bounded set D/Rd, a function f : D � R called the target
function, a function s: R � R called the activation function, and a natural
number n, we want to approximate f by a function gn : D � R of the form

gn(x)= :
n

i=1

a i s(vi } x+bi), (5)

with ai , bi # R, vi # Rd (a ``single hidden layer feedforward neural network
with n neurons''). We suppose that we already know a representation of f
as a neural network,

f (x)=:
k

cks(vk } x+bk), (6)

but with more than n, possibly infinitely many, terms. Of particular interest
is the case when the activation function is the unit step function _,

_(t) :={1
0

for t�0
for t<0.

(7)

In this case the quantity =n(8) of (4) can be easily estimated for L2(D), and
one can prove [8] the existence of gn of the form (5), for which & f& gn&L2(D)=
O(n&1�2&1�(2d )) for any f of (6) with � |ci |<�, an improvement over O(n&1�2)
of Barron [2]. A better than O(n&1�2) estimate is possible [8] also for Lq(D),
q<�.
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The case of the uniform norm, treated in this paper, is substantially
different. The following simple example shows that in the general situation
one cannot expect in this case an estimate similar to (3) even if =n(8) n&1�2

is replaced by any sequence Cn � 0 independent of f.

Example 1. In the space C[0, 1] let

f :=(2n)&1 (,1+ } } } +,2n), (8)

with ,i defined as follows. For m :=( 2n
n ), consider the matrix (ai, j), i=1, ..., 2n,

j=1, ...m, in which the columns are formed by all possible 2n-dimensional
vectors with n coordinates equal to 1, the other n to zero. Let (tj)

m
1 /[0, 1]

be some fixed points and let ,i # C[0, 1] be any function for which ,i (t j)
=ai, j . Then f (tj)=1�2 for all j. On the other hand, for any linear combina-
tion g=�n

&=1 c&,i&
one has g(tj)=0 for some j, so that & f& g&C�1�2.

Thus good estimates for & f& gn& in the uniform norm cannot be as
universal as in Lq , q<�. They can be valid only under some restrictions
on f and [,i]. Barron [1] considers the approximation in the space L�(D).
He proves that if the ,k in (1) are indicator functions of sets Dk/D and if the
family [Dk] satisfies certain combinatorial conditions, then for every f of the
form (1) with �k |ck |�1 there is a gn for which & f& gn&�Cn&1�2. This is
true, in particular, when the Dk are half-spaces vk } x+bk�0, that is, in the
case of neural networks with the activation function _. Yukich, Stinchcombe,
and White [12] extend Barron's result to neural networks with rather general
activation functions. Moreover, they consider also the error of approximation
&D:f &D:gn& of partial derivatives, up to a certain order.

Our main results are stated in two theorems. Theorem 1 establishes a
finite dimensional analogue of (3) in the uniform norm. Let lN

� be the space
of vectors y=( y1 , ..., yN) with the norm &y&=maxi | yi | , let 8/lN

� be a
bounded set, and let =n(8) be defined by (4) in the lN

� metric.

Theorem 1. For any f # lN
� of the form

f =:
k

ck,k , ,k # 8, :
k

|ck |�1 (9)

and every natural number n there is a gn=�n
i=1 a i,ki

with �n
i=1 |ai |�1 for

which

& f& gn&�4=n(8) n&1�2
- log(N+1). (10)

We prove this theorem in Section 2 and show how it can be used in the
analysis of neural networks with continuous target and activation func-
tions. We also discuss briefly a related problem of approximation by sparse
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trigonometric polynomials. In Section 3 we address specifically the case of
the activation function _. It will be convenient to take D to be the unit ball
|x|�1 of Rd. Since _(*t)=_(t) for *>0, the v in _(v } x+b) can be restricted
to the unit sphere Sd , and we can assume, without loss of generality, that
|b|�1. Indeed, otherwise the neuron _(v } x+b) is constant on D, which
means that all such neurons can be represented by just one term in (5).
Thus, the set [(v, b)] of parameters can be identified with the cartesian
product Q=Qd :=Sd_[&1, 1]. We define the product measure + on Q
by setting + :=+1_+2 , where +1 is the (unique) rotation-invariant measure
on Sd normalized by +1(Sd)=1 and +2 is the Lebesgue measure on [&1, 1].

Theorem 2. Let f : D � Rd be of the form

f (x)=|
Q

c(v, b) _(v } x+b) d+, (11)

where c( } , } ) # L�(Q, +), &c&��1. Then for any natural number n there
exist vk , bk , ak , k=1, ..., n, for which

sup
|x|�1 } f (x)& :

n

k=1

ak _(vk } x+bk) }�Cn&1�2&1�(2d )
- log n. (12)

Remarks. (1) In the case of uniform norm one has to distinguish between
continuous linear combinations (11) and those of the form �k ck_(vk } x+bk)
because one cannot ``round off '' the parameters in this case (the set of functions
[_v, b : _v, b(x)=_(v } x+b) : (v, b) # Q] is not precompact in L�(D)).

(2) Assuming that &c&1�1, Barron [2] proves for the functions (11)
an estimate �Cn&1�2 in (12). Since +(Q)=2, we have &c&1�2 &c&� . Thus
our result is incomparable, generally speaking, with that of Barron as we
obtain a better estimate under stronger assumptions. However, typically
c(v, b) is a continuous or piecewise continuous function on Q, in which
case our result is, of course, stronger.

The theorems of this paper, as well as all the above mentioned results,
are proved by probabilistic methods. Again, there is a significant difference
between the proofs for Lq , q<�, and for L� . The available proofs for
q<� deal only with averages (expectations or variances) of the random
quantities involved. In contrast, for q=� we shall need estimates of
probabilities of certain events, which usually requires more sophisticated
techniques. In [1] Barron derives his result from the uniform central limit
theorem of Dudley whereas the authors of [12] use also some other facts
from the so-called theory of empirical processes. We were unable, however,
to find general results that could similarly match our needs. Instead, in our
proof of Theorem 2 we modify and adapt to our construction the method
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of Vapnik and Chervonenkis [10] by which they prove their uniform law
of large numbers.

We try to keep our exposition elementary and essentially self-contained.
Although our goal is to establish only the existence of desired approxima-
tions, the proofs can serve as an outline for Monte Carlo type algorithms.
The logarithmic factors that appear in (12) and other L� esimates below
can probably be removed. It is certainly the case in (14).

2

The following estimate (13) is well known. It belongs to the family of the
so-called exponential bounds for large deviations (see, for example, [5, p. 266]).

Lemma 1. Let !=;1 !1+ } } } +;n!n , where ;1 , ..., ;n are real numbers
and !1 , ..., !n are independent random variables with |!j |�1, E!j=0, j=1, ..., n.
Then for every z>0,

P( |!|>z)�2 exp(&z2�(4B)), B := :
n

j=1

;2
j . (13)

Proof. The inequality et&t�et2
is valid for all real t. It is obvious for

t�1 and can be easily proved for t<1 using power series expansions.
From this we get, for every real s,

E(es!j )=E(es!j&s! j )�E(es2!j
2
)�es2

.

Due to the independence of the !j ,

E(es!)= `
n

j=1

E(es;j!j)�es2B.

By the Chebyshev inequality P( f (!)�a)�Ef�a, valid for every random
variable !, every non-negative function f, and a>0, we have, for s>0,

P(!�z)=P(es!�esz)�exp(s2B&sz).

Taking s=z�(2B), we get P(!�z)�e&z2 �(4B). Replacing !j with (&!j) we
similarly get P(!�&z)�e&z 2 �(4B), and (13) follows. K

We illustrate the use of this lemma in the type of problems under
consideration by the following example.
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Example 2. We shall prove that for the Bernoulli function f (x)=
��

k=1 k&r cos kx, r>1, and n=1, 2, ... there is a function g(x)=
�n

j=1 aj cos kj x with at most n harmonics for which

& f& g&C[0, 2?]�Cn&r+1�2
- log n. (14)

For the proof we set f =f1+ f2+ f3 , where f1(x) :=�n&1
k=1 k&r cos kx,

f2=�N
k=n , N :=n(r&1�2)�(r&1). Then

& f3&� :
�

k=N+1

k&r�CN &r+1�Cn&r+1�2.

We approximate f 2 by the random function g~ 2 ,

g~ 2(x) :=
S
n

:
n

i=1

�� i (x), S := :
N

k=n

k&r,

where �� i , i=1, ..., n, are independent, identically distributed random func-
tions. Each �� i equals one of the cos k( } ) (k=n, ..., N ) with the probability
k&r�S (more formally, the subscript i is a random variable with the range
(n, ..., N )). Then for every i and every fixed x we have E(�� i (x))=S &1f2(x).
For a fixed x, let

!� := f2(x)&g~ 2(x)=
2S
n

:
n

i=1

!� i ,

where

!� i=!� i (x) :=
f2(x)
2S

&
1
2

�� i (x).

Then E!� i=0. Since obviously |�� i (x)|�1, (1�S) | f2(x)|�1, we have |!� i |�1.
Therefore, by (13), for every x and every z>0,

P( |!� |>z)�2 exp \&
z2n

16S 2+ . (15)

Let 0N be the set of 4N points ?&�(2N ), &2N�&�2N&1. It follows from
(15) that

P(max
x # 0N

|!� |>z)�8N exp \&
z2n

16S2+ .
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The latter probability can be made <1 by setting z=CS - (log N )�n with
sufficiently large C. This means that there exists a function g2(x)=(S�n)_
�n

j=1 cos kjx (some kj may be repeating), for which

max
x # 0N

| f2(x)& g2(x)|�CS - (log N )�n=O(n&r+1�2
- log n).

This estimate can be extended from x # 0N to all x since

max |TN(x)|�A max
0N

|TN(x)|

for some absolute constant A and any trigonometric polynomial TN of
order �N (see [13, Chap. 10, (7.30)]). We obtain a desired approximation
g (with 2n harmonics) if we set g= f1+ g2 . K

The exact order in this problem, O(n&r+1�2), is only slightly better than
(14) but it has been established with the help of much stronger tools (for
references and the latest in approximation by sparse trigonometric polyno-
mials, see [3, 4]).

Proof of Theorem 1. We use a construction similar to that of the proof
of Theorem 1 in [8]. We assume without loss of generality that f =
�m

k=1 ck,k , and that m>n (otherwise there is nothing to prove), ck>0,
and �m

k=1 ck=1. We fix some =>=n(8) and represent the set 8 :=[,k]m
1

as the union of n disjoint non-empty subsets 8& of diameter �= (in the lN
�

metric), so that 8&=[,k : k # I&], �m
&=1 I&=[1, ..., m]. Let f& :=�k # I&

ck,k ,
S& :=�k # I&

ck , n& :=[nS&]+1, and let

g~ & :=
S&

n&
(�� (&)

1 + } } } +�� (&)
n&

), g~ :=g~ 1+ } } } +g~ n ,

where all the �� (&)
k , &=1, ..., n, k=1, ..., n& , are independent random elements.

For a fixed &, all the �� (&)
k , k=1, ..., n& , are identically distributed; namely, each

�� (&)
k is equal to some ,i # 8& with the probability p (&)

i :=ci �S& .
It will be convenient to treat the elements of lN

� as real-valued functions
of the argument x # [1, ..., N]. We have

f (x)&g~ (x)= :
n

&=1

=S&

n&
:
n&

k=1

!� (&)
k (x), !� (&)

k (x) :=_ 1
S&

f&(x)&�� (&)
k (x)& }

1
=

.

(16)

By a straightforward computation, E(�� (&)
k )=(1�S&) f& , hence E(!� (&)

k (x))=0
for every x. Furthermore, for each fixed & and each x, the values of �� (&)

k (x)
are within a distance �= from each other, consequently, at a distance �=
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from their expectation. Hence |!� (&)
k (x)|�1. We now apply Lemma 1 to the

double sum representing f (x)&g~ (x) in (16). We have

B= :
n

&=1

n& }
=2S&

2

n&
2 � :

n

&=1

=2S&
2

nS&
=

=2

n
.

By Lemma 1, for z>0,

P( max
x=1, ..., N

| f (x)&g~ (x)|>z)�2N exp \&
z2n
4=2+ .

For z=4= - log(N+1)�n this probability is <1, which proves (10) since =
can be taken arbitrarily close to =n(8). K

Example 3. Consider approximation of a function f : D � R, D=[x # Rd :
|x|�1], by a neural network whose activation function s(t)=sh(t), 0<h�1,
is a smoothed unit step function defined as a continuous function equal to
zero for t<0, to 1 for t>h, and linear on [0, h]. Suppose that

f (x)=:
k

cks(vk } x+bk), |vk |=1, k=1, 2, ..., :
k

|ck |�1.

We may assume that |bk |�2 for all k for otherwise s(vk } x+bk) is
constant on D. Let sv, b(x) :=s(v } x+b). Since s satisfies the Lipschitz
condition with the constant 1�h,

&sv, b&sv$, b$&C(D)�
1
h

( |v&v$|+|b&b$| ).

It is not hard to derive from this by a standard argument the existence of
an =-net in C(D) for the set 8 :=[sv, b : |v|=1, |b|�2] containing t(=h)&d

elements. Equivalently, =n(8)t(1�h) n&1�d.
Similarly, for $ :=hn&3�2 there is a $-net D$ in D of cardinality Nt(n3�2�h)d.

By Theorem 1, we can approximate f (x) by a g(x)=�n
i=1 ais(vki

} x+bki
)

with � |ai |�1 so that

sup
x # D$

| f (x)& g(x)|�(C�h) n&1�2&1�d log(n3�2�h). (17)

Every function sv, b satisfies the Lipschitz condition on D with the constant
1�h. Since �k |ck |�1 and �i |a i |�1, the same is true for f and g. It follows
that with our choice of $ the estimate (17) can be extended to all x # D
(possibly with a different C ).

Comparing (17) with the estimate (12) for the unit step function _, we
see that (17) gives a better order for n � � but deteriorates when h � 0.
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3

We shall consider random functions g~ : D � R, D :=[x # Rd : |x|�1].
More precisely, we shall introduce a probability space (G, F, P), where G
is a set of D � R functions, F is a _-field of subsets of G, and P is a prob-
ability measure on F. We shall consider only those functions g for which
&g& :=supx # D | g(x)|<�. We assume that for every x # D and y # R, the
set [g # G: g(x)< y] is measurable. We shall also deal with the space of
couples (g~ , g~ *) of independent random functions equipped with the product
measure P$=P_P. We shall assume that &g~ & and &g~ &g~ *& are random
variables on G or G_G, respectively. In our proof of Theorem 2 these
measurability assumptions will be trivially satisfied. The following lemma is
rather general; the set D in it can be arbitrary.

Lemma 2. Let supg # G &g&<�, and for a fixed x # D let f (x) :=Eg~ (x)
and var g~ (x) be the expectation and variance of the random variable g~ (x). If

=�3 - V, V :=sup
x # D

var g~ (x),

then

P[g~ : & f&g~ &>=]�2P$[(g~ , g~ *): &g~ &g~ *&>=�2]. (18)

Proof. In the space G_G of couples (g~ , g~ *) consider two events, A
and B,

A :=[&g~ &g~ *&>=�2], B :=[& f&g~ &>=].

From the Chebyshev inequality

Prob[ |!� &E!� |�*]�var(!� )�*2

follows for every fixed x # D

P[ g~ *: | f (x)&g~ *(x)|>=�2]�
4V
=2 <

1
2

. (19)

If & f& g&>= for some g # G, then | f (x0)& g(x0)|>= for some x0 # D. On
the other hand, by (19),

P[ g~ *: | f (x0)&g~ *(x0)|�=�2]�1�2,

so that for every such g

P[ g~ *: &g&g~ *&>=�2]�1�2.
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This implies, due to the independence of g~ and g~ *, the estimate for the
conditional probability: P$(A�B)�1�2. Since the event B involves only g~
but not g~ *, we have P$(B)=P(B). Hence

P$(A)�P$(BA)=P$(B) } P$(A�B)�P(B) } (1�2),

as claimed. K

A hyperplane in Rd is defined by some v # Rd, b # R as the set [x: v } x+b=0].
The next lemma is well known (see, for example, [6, p. 385]).

Lemma 3. The largest number of connected components into which n
hyperplanes can split the space Rd does not exceed (4en�d )d.

Proof of Theorem 2. It will obviously suffice to establish (12) for some
subsequence nmtmd, m=1, 2, .... We may also assume that c(v, b)�0 in
(11) since c=c1&c2 with 0�c1 , c2�1. We break the set Q :=[(v, b)]
into certain subsets with disjoint interiors, which we shall call clusters, so
that if (v, b) and (v$, b$) belong to the same cluster, then |v&v$|�1�m,
|b&b$|�1�m. To this end, we cover the sphere Sd by tmd&1 balls of
radius 1�(2m) centered on Sd . That this is possible can be easily deduced
from the fact that the ball |v|�1 can be covered by 3d md balls of radius
1�m (see [6, p. 487]). By eliminating the overlaps we obtain a covering
of Sd by tmd&1 disjoint subsets Aj/Sd , each of diameter �1�m. The
((d&1)-dimensional) area of each Aj satisfies +1(Aj)�(1�m)d&1 since it
obviously does not exceed the area of the sphere |v|=1�m equal to
(1�m)d&1 +1(Sd). We now define clusters Q i as the cartesian products
Aj_2k , where 2k are the intervals [k�m, (k+1)�m], k=&m, ..., m&1.
This gives the total of ntmd&1 } (2m)tmd clusters Qi , and +(Qi)�
(1�m)d&1 } (1�m)=m&d for each i. With each cluster Qi we associate the
number

ai :=|
Qi

c(v, b) d+, i=1, ..., n. (20)

Since 0�c(v, b)�1, we have 0�ai�m&d. We may assume that a i{0 for
each i for this can be always achieved by an arbitrarily small perturbation
of c(v, b). Let (v~ i , b� i) be the random point distributed on Q continuously,
with the density

\i (v, b) :={c(v, b)�a i

0
if (v, b) # Qi

if (v, b) � Q i .
(21)
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We define a random approximation g~ to f by setting

g~ (x)=g~ n(x) := :
n

i=1

a i _~ i (x), _~ i (x) :=_(v~ i } x+b� i). (22)

We assume that the 2n random variables

v~ 1 , b� 1 , ..., v~ n , b� n , v~ 1* , b� 1*, ..., v~ n*, b� n*

are independent and let P denote the corresponding product measure. We
have

E(_~ i (x))=(1�ai) |
Qi

c(v, b) _(v } x+b) d+,

hence E(g~ (x))= f (x) for every x # D.
We now want to esimate the probability P( g~ : & f&g~ &>=) for some

special =. In order to apply Lemma 2, we estimate the variance var( g~ (x))
for an arbitrary point x # D. We have, due to the independence of the _~ i ,

var g~ (x)= :
n

i=1

a2
i var(_~ i (x))�m&2d :

n

i=1

var(_~ i (x)). (23)

Since _~ i (x) can take only two values, 0 or 1, we have var(_~ i (x))�1 for all
i. Moreover, if some cluster Qi does not contain a point (v, b) for which
v } x+b=0, then the realizations of _~ i are either all 1 at x or all 0, so that
var(_~ i (x))=0. If for some x # D and some v, v$, b, b$ we have v } x+b=0,
v$ } x+b$=0, and |v&v$|�1�m, then we also have |b&b$|�1�m. It follows
that for each Aj there are at most three intervals 2k for which the cluster
Aj_2k contributes a non-zero term to the sum (23). Thus of the total
number ntmd of summands in (23), only at most tmd&1 are non-zero
(the subset of non-zero summands varies with x), so that for every x

var g~ (x)�Cmd&1 } m&2d�Cn&1&1�d, (24)

with C independent of x. This justifies the application of Lemma 2 for any
==Cn&1�2&1�(2d ) with sufficiently large C. According to this lemma, we
need to estimate the quantity 2P$[(g~ , g~ *): &g~ &g~ *&>=�2], where g~ and g~ *
are two independent samples. For a fixed x # D,

g~ (x)&g~ *(x)= :
n

i=1

ai[_(v~ i } x+b� i)&_(v~ i* } x+b� i*)]. (25)

The parameter multivector in (25),

w :=(v~ 1 , b� 1 , ..., v~ n , b� n , v~ 1* , b� 1*, ..., v~ n*, b� n*), (26)
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is a random variable distributed continuously on the cartesian product Q2n

with the density

\(w) :=\1(v1 , b1) } } } \n(vn , bn) \1(v1*, b1*) } } } \n(vn*, bn*).

The value of \(w) remains invariant if any point (vi , bi) is interchanged
with its counterpart (vi*, b i*), i=1, ..., n. This fact enables us to treat the
choice of parameters (26) as a two-step procedure. We (1) select in each
cluster Qi two points, (v$i , b$i) and (vi", bi"), and then (2) arbitrarily designate
one of them as (vi , bi) and the other as (vi*, bi*). For every outcome of the first
step there are 2n possible outcomes of the second step, all with the same
probability 2&n. For a fixed x and fixed vi$, bi$, v i", bi", i=1, ..., n, we have

g~ (x)&g~ *(x)= :
n

i=1

;i%� i , ;i :=ai[_(v i$ } x+bi$)&_(vi" } x+bi")],

where %� 1 , ..., %� n are independent random variables equal to 1 or to &1,
each with the probability 1�2, with the corresponding probability measure
P0 defined on the vectors % :=(%1 , ..., %n) by setting P0(%)=2&n for every
%. By Lemma 1 we obtain for fixed ;i

2P0[ | g~ (x)&g~ *(x)|>=�2]�4 exp \&
(=�2)2

4B + . (27)

We have |;i |�m&d, and the number of non-zero ; i is at most tmd&1 (for
the reason explained in the derivation of (24)), hence B=�n

i=1 ;2
i �

Cm&d&1. From this and (27),

2P0[ |g~ (x)&g~ *(x)|>=�2]�4 exp(&A=2md+1), (28)

where A depends only on d (but does not depend on x or m). For fixed
v$i , b$i , vi", bi", i=1, ..., n, the function g~ (x)&g~ *(x) is piecewise constant
on D, and by Lemma 3, the number N of subsets on which it is constant
does not exceed (8en�d)d. Consequently, the norm &g~ &g~ *& equals the maxi-
mum of | g~ (x)&g~ *(x)| on some set of N points which can be considered
fixed while [v$i , b$i , vi", bi"]n

1 remain fixed. In view of (28),

2P0[&g~ &g~ *&>=�2]�4N exp(&A=2md+1). (29)

Since this estimate of conditional probability does not depend on the
condition (that is, on the choice of v$i , b$i , vi", bi", i=1, ..., n), P0 in (29) can
be replaced by P$. Therefore by Lemma 2,

P( g~ : & f&g~ &>=)�4N exp(&A=2md+1). (30)
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Since n=Cmd, the probability (30) will be <1 if we set

= :=Cn&1�2&1�(2d)
- log N=Cn&1�2&1�(2d )

- log n

with sufficiently large C. This fact implies the existence of g(x)=
�n

i=1 ai _(vi } x+bi) satisfying (12). K

Remarks. (1) A similar approach can be used in the case of more
general networks �k ck_(Pk(x)), where Pk are polynomials in d variables
of degrees not exceeding l. A relevant result is the following generalization
[11] of Lemma 3: For any set of n polynomials, the number of connected
components into which the surface P1 } } } Pn=0 splits Rd is at most (4eln�d )d.

(2) Sufficient conditions for the validity of certain error estimates in
neural network approximation can be expressed in terms of the Fourier
transform. Barron [1] proves that if a function f : D � R can be extended
to f # L1(Rd) with

|
R d

||| | f� (|)| d|<�, (31)

then for each n=1, 2, ... there is a gn=�k ak _(vkx* +bk) for which
& f& gn&L� (D)=O(n&1�2). In the spherical coordinates (31) becomes

|
Sd

d+1(v) |
�

0
rd | f� (rv)| dr<�.

We claim that under a stronger condition

sup
v # Sd

|
�

0
rd | f� (rv)| dr<�, (32)

there is a gn for which & f& gn&=O(n&1�2&1�(2d )
- log n). Indeed, for every

a>0 and |t|�a,

eit=e&ia+i |
a

&a
_(t&{) ei{ d{.

Hence for |x|�1, |{0,

ei| } x=e&i |||+i |
|||

&|||
_(| } x&{) ei{ d{.
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By a change of variables, r :=|||, v :=|�r, and since _(*t)=_(t), *>0, we
get

eirv } x=e&ir+ir |
1

&1
_(v } x&{) eir{ d{.

Substituting this into the inverse transform

f (x)=|
Rd

f� (|) ei| } x d|=|
Sd

d+1(v) |
�

0
rd&1f� (rv) eirv } x dr,

we obtain

f (x)=Cf+|
Q

c(v, {) _(v } x&{) d+, c(v, {) :=i |
�

0
rd f� (rv )eir{ dr.

Therefore, due to (32), the function f (x)&Cf satisfies, up to a constant
factor, the conditions of Theorem 2, which justifies our claim.
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